Discussion of Beck and Wieland

Money in Monetary Policy Design

by Mathias Hoffmann

2007 Konstanz Seminar in Monetary Theory and Policy

22-25 May, 2007
Very interesting paper(s)

Short and crisp

A brief discussion
One of the first serious attempts to formalize the notion of the second pillar in an otherwise standard theoretical framework.
One of the first serious attempts to formalize the notion of the second pillar in an otherwise standard theoretical framework where standard means: moneyless model of MP.
What’s it about / background

- One of the first serious attempts to formalize the notion of the second pillar in an otherwise standard theoretical framework
- where standard means: moneyless model of MP
- 1st paper: formalization of cross-checking

Assenmacher & Gerlach (2006 a,b, cz)

by Mathias Hoffmann (2007 Konstanz Seminar in Monteray Theory and Policy)
One of the first serious attempts to formalize the notion of the second pillar in an otherwise standard theoretical framework where standard means: moneyless model of MP

1st paper: formalization of cross-checking
2nd paper: distinguishes more clearly against Gerlach-style 2PPC
One of the first serious attempts to formalize the notion of the second pillar in an otherwise standard theoretical framework where standard means: moneyless model of MP

1st paper: formalization of cross-checking

2nd paper: distinguishes more clearly against Gerlach-style 2PPC

Empirical motivation: renewed interest in and lots of empirical evidence for the low frequency link between money and inflation Assenmacher & Gerlach (2006 a, b, cz)
How it works

- Money enters as an additional statistics.
How it works

- Money enters as an additional statistics.
- Cross-checking is useful because there are persistent misperceptions about the output gap and possibly other macro-variables.
How it works

- Money enters as an additional statistics.
- Cross-checking is useful because there are persistent misperceptions about the output gap and possibly other macro-variables.
- Ensuing policy bias can be corrected through monetary analysis.
Money enters as an additional statistics.

Cross-checking is useful because there are persistent misperceptions about the output gap and possibly other macro-variables.

Ensuing policy bias can be corrected through monetary analysis.

Unlike in Gerlach’s 2PPC setup, here money does not enter directly into structural relations.
Money enters as an additional statistics.

Cross-checking is useful because there are persistent misperceptions about the output gap and possibly other macro-variables.

Ensuing policy bias can be corrected through monetary analysis.

Unlike in Gerlach’s 2PPC setup, here money does not enter directly into structural relations.

Apparent advantage: no worry about justifying Δm here.
Theoretical framework again

\[\Delta v_t = -\Delta m_t + \Delta p_t + \Delta y_t \]

with standard money demand equation

\[m_t - p_t = \gamma_y y_t - \gamma_i i_t + \varepsilon_{t}^{md} \]

leads to

\[\Delta p^* = \Delta m^* - \gamma_y \Delta y_t^* \]

capture lowfrequency-movement of some variable \(x \) as

\[x_{t}^f = x_{t-1}^f + \lambda(x_{t-1} - x_{t-1}^f) \]

B&W use

\[\mu_{t}^f = \Delta m_{t}^f - \gamma_y \Delta y_{t}^f \]
\[\pi_t = \pi_{t+1}^e + \alpha_y (y_t - y_t^*) + \varepsilon_{\pi,t} \]

\[y_t - y_t^* = (y_{t+1}^e - y_{t+1}^{*e}) - \beta_r (i_t - \pi_{t+1}^e - r_t^*) + \varepsilon_{y,t} \]

Expectation formation is backward looking:

\[\pi_{t+1}^e = \pi_{t-1} \]

\[(y_{t+1}^e - y_{t+1}^{*e}) = y_{t-1} - y_{t-1}^* \]

And CB minimizes

\[E_t \sum_{s=t}^{\infty} \delta^{s-t} (\pi_t - \pi^*_t)^2 \]

which leads to the Taylor-rule

\[i^{opt} = r^* + \pi_{t-1} + \frac{1}{\alpha_y \beta_r} (\pi_{t-1} - \pi^*) + \frac{1}{\beta_r} (y_{t-1} - y_{t-1}^*) \]

B&W introduce misperception through persistent bias in output gap:

\[i^{opt} = r^* + \pi_{t-1} + \frac{1}{\alpha_y \beta_r} (\pi_{t-1} - \pi^*) + \frac{1}{\beta_r} (y_{t-1} - y_{t-1}^* - bias_{t-1}) \]
ECB-style cross-checking vs. 2PPC

2PPC:

\[\pi_t = \alpha \mu \mu_t^f + \alpha \pi \pi_{t-1} + \alpha_y (y_t - y_t^*) + \varepsilon_{\pi,t} \]

CC:

\[i_t^{CC} = i_t^{opt} + i_t^{MA} \]

and

\[i_t^{MA} = \begin{cases}
i_t^{MA} + \frac{\mu_{t-1} - \pi^*}{\alpha_y \beta_r} & \text{if } |\mu_{t-1} - \pi^*| \text{ too large for too long} \\
i_{t-1} + 0 & \text{otherwise} \end{cases} \]
Like the idea, the insight, the formalization, but...
Like the idea, the insight, the formalization, but...

is not an alternative to 2PPC but rather a rationale for it
Like the idea, the insight, the formalization, but...

is not an alternative to 2PPC but rather a rationale for it

In standard, money free model money can only be made relevant if it carries additional information. But under RE both the CB AND the public should then use it.
Like the idea, the insight, the formalization, but...

is not an alternative to 2PPC but rather a rationale for it

- In standard, money free model money can only be made relevant if it carries additional information. But under RE both the CB AND the public should then use it.
- But that means it MUST ultimately enter a structural relation.
Like the idea, the insight, the formalization, but...

is not an alternative to 2PPC but rather a rationale for it

- In standard, money free model money can only be made relevant if it carries additional information. But under RE both the CB AND the public should then use it.
- But that means it MUST ultimately enter a structural relation.
- Under a full RE solution, the very fact that CB may do cross-checking (and be it for purely statistical reasons) in the first place may provide the theoretical underpinnings for putting μ into a structural relation!
baseline model with bias:
\(\sigma(\Delta p) = 1.1, \ \Delta p = 3.1 \)

2PPC model with bias:
\(\sigma(\Delta p) = 1.4, \ \Delta p = 3.2 \)
baseline model with bias and CC:
\[\sigma(\Delta p) = 1.3, \quad \overline{\Delta p} = 2.09 \]

2PPC model with bias and CC:
\[\sigma(\Delta p) = 1.4, \quad \overline{\Delta p} = 2.09 \]

Under Cross-checking, the no-money and the 2PPC model are indistinguishable!
In the data, money seems to be leading prices and that partly explains why it may be perceived useful by the ECB.
In the data, money seems to be leading prices and that partly explains why it may be perceived useful by the ECB.

Present formalization of CC misses out on this expectational element.
In the data, money seems to be leading prices and that partly explains why it may be perceived useful by the ECB.

Present formalization of CC misses out on this expectational element.

In the B&W, model money tells you something about contemporaneous velocity and that’s why it is useful when output gap and real interest rate are estimated with error.
In the data, money seems to be leading prices and that partly explains why it may be perceived useful by the ECB.

Present formalization of CC misses out on this expectational element.

In the B&W, model money tells you something about contemporaneous velocity and that’s why it is useful when output gap and real interest rate are estimated with error.

Is cross-checking done because we are uncertain about inputs into model or about the model itself?